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I. GENERAL INTRODUCTION

_—The interatomic forces in a crystal are usually strongly depen-
dent on the interatomic spacing and consequently the lattice potential
energy for a crystal can generally be written as a power series in the
displacements of the atoms from their equilibrium positions. If such an
expansion is terminated at the quadratic térms, then this constitutes the
so-called harmonic approximation. 1In the harmonic approximAtion the lactice
vibrations are true normal modes such that 1if energy is channeled uniquely
into any one lattice mode. then it will remain undissipated in that mode.
The harmonic approximation would theretore predici, fcr instance, that the
scattering cross section for neutrons by a Bravais lattice would cousist of
a set of § function peaks or, analogously, that the spectral profiles of
lattice vibrations would be a set of undamped temperature indcpendent reso-
nances. These and other such predictions are, of course, in marked dfscord
with experimental results. It is therefore clear that the anharmonic terms
in a lattice potential must be considered if a full uunderstanding of many
of the physical properties of solids is to be achieved.{\

The inclusion of the anharmonic terms in a fé?&ice potential has
several consequences a3 far as phcnons are concarn@d. Firstly, the ohenom-
enon of thermal expansion is now allowed and this leads to so-called thermal
strajn shi‘ts of the phonon energies away from their harmonic valuves.
Secondly, interactions between the normal modes can now occur and this opens
up channels for the decay of phonons which, in turn, causes additional so-
called anharmanic self-energy shifts of phonon energies away from their
harmonic values and the appearance of finite lifetimes for the phonons.(l’z)

Thirdly, it opeas up the possibility of interactions between certain phonons
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and fluctuations in the phonon density distribution,(3’b) one of the ramif-

ications of which (under favorable conditions) can be the appearance of a

relaxing self-energy component for a mode, and it {s this latter which is !

predicted to lead to low-frequency structure in the response function for

the mode, which is now generally referred to as a central component.
Before proceeding further, it is useful to stress certain dis-

tinguishing features and certain common characteristics of these components. ’

3
The thermal strain component for a mode is a frequerncy independent quantity, %
whereas the anharmonic self-energy and relaxing self-energy comronents :re

frequency dependent. The two latter, however, are differentiated in their

frequency dependence because the main structure in the anharmonic self-energy
occurs around 1012 Hz whereas the central component arising from the relaxing
self-energy occurs at much lower frequencies, probably in the 106-109 Hz
range. The ~entral feature which is common tc all these components is that
they each can contribute to the temperature dependence of a mode, somet‘mes
‘n a dominant and Important way. In weakly anharwmonic systems, like the
alkall halides for instance, the temperature dependence of all modes is
generally determined by the ccmpetition or enhancement between the thermal
strain and the anharmonic self-energies; for such materials the magnitude

of both components for a mode is generally small compared to the harmonic

energy of the mode, so that the resulting temperature dependence is also
small., The effect of these two contributions, however, can be separated
because the probability for phonon inCeractioﬁ is determined by the thermal
population factors with the result that a phonon anharmonic self-energy will
contribute a temperature dependence even under isochoric conditions, which

is in contrast to that arising from the thermal strain component. For
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certain modes in more strongly anharmonic systems, such as the soft mode in
displacive ferroelectrics, this marginal imbalance between the magnitude of
the thermal strain and anharmonic self-energy is broken, with the latter
becoming so large as to strongly dominate both the thermal strain and the
mode harmonic energy, which is imaginary, so that such systems are stabilized
in their paraelectric phase by these huge anharmoric se2lf-energy contribu-
tions to the soft mode. In certain other strongly anharmonic systems, like
piezoelectric hydrogen-bonded ferroaslectrics, the relaxing self-energy can
also .ontribuce importantly to the temperature dependence of the soft-mode
in that it can cause the mode to condense out below the characteristic
clamped-Curie temperature. In additicn, the relaxing self-energy gives rise
to a temperature dependence of the central compogent which is most pronounced
as the clamped-Curie temperature is approached. '

These three components, the thermal straim, the complex anharuonic
self-energy and the relaxing self-energy provide the general focus of the
scope of this final report. This focus is inexorably linked with the
ultimate goal of achieving a satisfactory understanding and characterization,
via theoretical descriptions, of anharmonic interactions, both wecck and
strong, and the role that these play in systems like ferroelectric materials.
Fer;oelectric materials are of great interest, of course, because of ik
enormous diversity and inter-relatisn of their physical prcperties which may
be harnessed to provide solutions to technological problems such as memory
function devices and the like.

Section II of this report is concerned with the determination of the

thermal strain component and, more importantly, of the frequency dependence

of the anharmonic self-energy and damping function of the q =~ O transverse
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optic mode in simple ionic systems. Section III deals with an experimental
determination of the self-energy contributions associated with the soft mode
in displacive ferroelectric materials. Section IV describes optical and
dielectric investigations of the relaxing self-energy associated with the

soft mode in piezoelectric hydrogen-bonded ferroelectrics.

d




) II. WEAKLY ANHARMONIC SYSTEMS

A. Introduction

In describing the physical properties of a real amharmonic crystal
it is usual to resort to the use of perturbation :theory. While ordinary
perturbation theory has been used to describe anharmonic interactions,(5—7)
more recent discussions have appealed to the techniques of quantum field
theory in whicn the system is described in terms of the Green's functicns
or propagators for the gystem. The use of temperazture-dependent time-
ordered Green's functions to describe anharmonic interactions between ucrmal

1 (2)

modes of vibration has been described by Maradudin and Fein and Céwley.
These authors have shown that the dielectric and scattering properties {which
are of interest here) of an anharmonic crystal are dependent on the Fourier

; transforms of certain time correlation functions, the simplest of which is |

the one-phonun Cieen's function defined by

G(g,13',t) = {TA(g,3,£)A%(g,3",0)) {1

wlicre the phonon operator A(q,j) is defined in terms of the sum of a creation
and destruction operator, T is the Dyson time-ordering parameter, and the

triangular parentheses represent thermal averaging. These Green's fructions

are periodfc i{n the complex time direction and can be expanded in a Fourier

series in that direction. The coeffi.lants of thies series are

-iBgA
i i
6(q,33°%D = 53 G(g,33',t) e de (2)
0
where B = 1/kT, k being Boltzmann's constant, and Q = 2mzi/8%, x being an
integer. The physical properties of the crystal can be obctained from these

coefficients, analytically continued over the whole of the complex £l plane.

i
'




The coefficients are obtained from the use of diagrammatic perturbation

theory and the Dyson equation for the Green's functions obtained from these

diagrams is the matrix equation

E, @01 - @) 8,0 + 20, 0(q, 3.0
3

' 6jj' th(g,j)
xc(g‘)j'j )0) = Bﬁ 3 (3)

where D(y,jj’,Q) is the anharmonic self-energy of the phonons. In the har-

monic approxiration the «elf-energy D(q,jj’,0) is zerv and the left-~hand

side of equation (5) then plays the role of the dynamical matrix within the
harmonic approximation. 1In the anharmonic crystal the self-energy is not
zero and the matrix on the left-hand side of equation (3) couples phonons
from the dispersion branches j, j', and j* with the same wave vector. This
coupling will oczur whencver the modes transform according to the ssme irre-
L ducible representation of the space group of the crystals. The matrix
D(g,jj',n) has Hermitian and anti-Hermitian parts, the Hermitian parts
gilving rise to a shift in the normal mode frequencies, and the anti~Hermitian
parts giving vise to a now finite lifetime for the phonon state. Formally

the anhirmonic contribution te the Hermitian part of the self-energies of

the normal moges can be included by renormalizing the frequencies and eigcn-
vectors of the normal modes. If thz cff-diagonal Hermitian terms in the 3
matrix equation are neglected, then the Green's function for the anharmonic
crystal becomes similar to that of the harmonic crystal if [wh(g,j)]z is

replaced by [w(q,j)]2 such that '

[m(ng)]z - [wh(gnj)lz + th(g_,j)D(g,jj,ﬁ) ’

e B B i .
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where

D(Sojjon) - A(g)jjln) - ir(gajj,n) . (5)

Detailed expressions for the self-energy D(q,jj',fD have been

evaluated by a number of authors.(l’z’s’g) To second order in both cubic

and quartic anharmonicity, the real part of the total anharmonic self-energy

may be written
‘ E ’ A et o
8(g,33,) = 87(a,33°) + &7(g,53%50) (6)
where AE(q,jj') is the thermal-strain contribution giveu by
E ' 2. R T §
A (gvjj ) = A z vaa(gj’ Sj ) udB ’ 7
and &r(q,jj',fb is the anharmonic self-energy contribution given by
A ~ ~ .
trq, 13 = Mg, 13 + Brg.s’ ()

where AA(q,jj') is a frequency-independent contribution and KA(q,jj',Q) is

a frequency-dependent comtribution to AA(q,jj',fD given by

.31 = 09,130 + 6P @550 Q)
with
A(a}(g,jj') = 'l;,g Ej V(qi; a3’ qyips ~qpdp) @+ ), (o}
Qih ’

A(s)(g.Jj') - -1-‘"% L I T V(qh a3 gyl mgydy)
3131 32 9333

("1 +n,+1 ny-n,
X V(ay ;5 -913,5 93335 "1333) Pooh b r>
1 2 1

X (2 + 1), (11

-




and

2,330 « 8910 + 8%, 5100 (12)
with
8®¢q,33" 0 = -2 £ T |vigs g0y 93017 RO (13)
a4

’ 6
s B, 5300 - -8 £ T T |vigls ayis 00y 33391550, (14)
P48 B2l B

where
2, + né + 1 n, -+ 2, + 1 2(u1 - nz)
RO =% . w b ho B ‘ (15
+ w + w, o - W~ w, Q- w, + w,

sm>'=[(n+1)<n+1><n+1>-nnn](n 1
[ 1 2 3 | 1723 +w h + h 4+ h

1 2 3
1
- " - n ;>'+ 3rn1(n2 + 1)(n3 +1)
s W W, - W
- (n +1)nn.,}( L — - 1 h)]
1 237w . © h N h + h Q-+ h _h
vt T 3 vp T T
(16)
The imaginary part of the self-energy is given by
F(@ 13" = 9 @,11".9 + r®@13%0 - an
where
A , 1 rg,ii"o
A7(q,33°,0) = 2 . @-an, . (18)

In these equations the n's are phonon population numbers, the V coefficients

are the Fourier-transformed anharmonic force constants, and the superscripts

. — - e wam e e e e -




on the A and I label that part of the quantity coming from the contributions

to that order in parameter w when the Hamiltonian is of the form

-~

3 4
H= Ho + 7 H3 + 7 HA . (19)
In this section of the report, we are concerned vith the theoreti-

cal and experimental determination of the quantities defined by equations

! t, chat is for zone-

(7), (8) and (17) determined at q =~ 0 and with j = j

center transverse optic phonons in simple cubic ionic systems like the

alkali halides.

B. Numerical Evaluations of Self-Energy Components

As can be seen from the previous section, the self-enecgy com-
ponents of interest here involve complex latticedynamical summations which
require significant computational times even on today's high-speed computers.
As a result, reports of such calculatiou= have been somewhat limited and to
date have beca confined to a few simple ionic materials. (2,10-14)

Such numerical estimates of the different self-energy components
can be made providing the harmonic frequencies wh(ﬂ)j) are known throughout
the Brillouin zone and provided the J coefficients can be evaiuaied. For
simple cubic materials like “he alkali halides reasconable lattice-dynamical
calculations of the dispersion curves throughout the Brillouin zone can be
made thus generating the eigenvectéfs and eigenvalues necessary for the
evaluation of the lattice sums contained in equations (7)-(18). Alterna-
tively, these can be obtained by fitting measured low-temperature dispersion
curves to particular lattice-dynamical models. In order to evaluate the V
coefficients, certain assumptions must be made concerning the nature of ‘the

forces that interact between the ions in the lattice. The procedure gener-

o rrn et LSt B el X Y LA 857 g Y SN o Y TS AR LA . oy
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ally chosen is to assume a short-range cenrral-force repulsive potential
and to ignore any anharmonicity in the Coulomb contributions to the lattice
potential because of the expected dominance of the former contribution (the
anharmonicity of the Coulomb interactions can be included if necessary,
though) .

The specifics of the various lattice dynamical calculations that
are used to generate the harmonic frequencies, wh(g,j), and of the procedures
to evaluate the V coefficients are lengchyv and, since they have been dis-
cussed in the literature,(2'10-16) we will not detail them here.

This group has made numerical calculations of AE(O,t), AA(C,t,U)
and '(0,t,0) and their temperature dependence for all of the alkali halides.
In making our calculations of the principal parts and 6§ functions occurring
in equations (7)-(18), we used the representation method suggested by
Maradudin and Fcin,(l) which involves the approximation

[0 170 - im0 = o+ 107! (20)

where € has a small but finite value. 1In our calculations(lJ’la)

we uced a

mesh of 8000 points in the Brillouin zone for F(6)(0,t,ﬂ) and A(6)(O,C,Q),
4

but only a mesh of 1000 points for the lengthier calculations of T‘B)O,t,ﬁ)

(8)

and A (0,t,Q). 1In general we used a value of ¢ = 0.01 wL, where wL is the

value cf the highest frequency in the 3rillouin zone.

C. Experimental Determinations of Self-Energv Components

(1) Introduction

Under normal conditions, experimencal measurements do not lead

straightforwardly to a separation of the thermal strain and anharmonic self-

17)

first pointed out,

energy components. However, as Lowndes and Martin




they can be separated out by a suitable combination of the constraint of

high pressure and variable temperature because the anharmonic self-energy
components will contribute a temperature dependence to a phonon energy that
occurs even when a crystal is maintained under isochoric conditions. Lowndes
and Martin(17) used this approach via high-pressure/variable temperature low~
frequency (~ 103 Hz) dielectric constant measurements to make first estimates
of the therm21 strain, AE(O,t), and low-frequency anharmonic self-energies,
AA(O,t,O), of the £‘§50 transverse optic phonons in simple ionic solids. 1In
the course of the work covered by this final report, this group has(la'la)
devcloped high-pressure far infrared techniques i1n order that a similar

approach via high-pressure/variable temperature far infrared measurements

could be made to make separate estimates of the thermal strain component,

12

E
4 (0,t), and first estimates of the far infrared (~ 10~ Hz) anharmonic

self-energy compenents, AA(O,t,wt), of the 3'a,o transverse optic phonens in
the same simple icnic compounds.

But, as equations (8) and (17) show, the anharmonic self-energy
componenis are frequency dependent and their full frequency dependence
really needs to be derermined in order to more fully test the current anhar-
monic theories. To achieve tiiis, one needs in principle to be able -o
measure the frequency dependence of both the real and imaginary parts of the
mode response function via some conwvcnient physical property. Unfortunately,
most measurements do not lead directly to the form of both the real and
imaginary part of the system response (conventional power far infrared spec-
troscopy, for example, leads directly to only the reflection amplicude,

v

whereas the phase angle needs also to be determined in order to evaluate the
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real and imaginary parts of the dielectric response; similarly, inelastic

light-scattering techniques lead directly to only the imaginary part of the :'
susceptibility). Of course, in principle, such measurements can be used to
calculate the other component via an appeal to causzlity, such as when the
Kramers-Kronig relations are used, but such procedures have only limited
accuracy. One measuring technique which overcomes these problems is the
comparatiéely new and novel technique of dispersive Fourier traasform spec-
troacopy(lg’QO) (DFTS), in which a sample is placed in one arm of a Michelson
interferometer rather than outside it as in éonventic:ai spectroscopy. DFTS
leads directly to a sinuitaneous determination of the system reflection
amplitude and phase anple, and hence of the real aﬁd imaginary parts of the
dielectric response. This in turn can then be used to make determinations F
of the frequency dependence of AA(O,t,O) and T(0,t,0). During the work 1;
covered by this final report, this research group, in collaboration with

Dr. T. J. Parker of the University of London, has dcveloped and used this

technique to lead to a determination of the full frequency dependence of

AA (0,t,0) and I'(0,t,00) for a number of simple ionic materials.(ZI)




w]l3=

(2) Determination of AE(Q,t)

The current theories of anharmonicity lead to the conclusion that
the quasi-normal frequency of a phonon measured in any resonance experiment

is given by

ap o08) = 0'(0,0) + 2M@,e) (ah 0y 3 + AF O, 2w L D)

where the subscripts T and O denote the operative temperature and pressure

(1%)

of the system, respeztively. It is readily shoun that AE(O,t) is 5j

determined by

2 2
la, .(0,6)% - o (0,6)%]
sE0,t) m - Lo 71,0 , (22)
ZWOO(OQt)

where w0,0(o’t) has bean taken as a i1eascnable estimate of mh(o,c), and

! mr,P(O’t) is the lattice vibration friquency measured at a temperature T
and at a pressure P which is such as to reduce the volume of the crystal
to that which it has at 0 K aad zerc pressure. The right-hand side of
equation (22) contains zll experimentally measurable parameters thus
enabling an experimental determinatiun of AE(O,t).

A separate determination of AE(O,t) can be made as follows. At

G=0, I'(0,t,0) = 0, and the lattice contribution to the static dielectric

response can be written as

' h, 2,2
3y
o) - w (0.£) 50 . (23)

«0,6)% + 207(0,6)[a(0,¢,0) + aF(0,t)]

Providing the oscillator strength s(O)2 is reasonably temperature indepen=-

dent, it is readily shown(17) that equation (23) leads to
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op £0,0° a1

w, .(0,t) L
0,0 ET’O(O)

aBe0,e) = - , (24)

vhere the subscripts on w and eL again refer to temperature and pressure,
respectively. AeL(O)]T is a measure of the change in eL(O) on raising the
pressure isothermally at a temperature T so as to restore the volume of the
crystal to that which it has at 0 K and zero pressure. The approximation
sign used in this equation stems from two sources. Firstly, as discussed
above we have used values of the lattice vibration frequency determined at
close to T - 0 K and at zero pressure, woo(o,t), to spproximate wh(O,t).
Secondly, it is assumea that S(O)2 is reasonaply temperature independent;
justificaticn for this for temperatures up to 500 K nas heen given by Lowndes

an

and Martin. The right hand side of equation (24) contains all experi-

mentally measurable parameters and hence can lead to a second determination

of aE(0,1t).

In our work, we have determined AE(O,t) from both equations
(22) and (24) and have gererally found good agreement between the two
approaches.

The determination of AE(O,t) by these two separate procedures there-
fore requires the measurement of the isnbaric (at 1 bar) temperature dependence

of wp 0(O,t) and the corresponding high-pressure and temperature dependence of
»

W P(O,t) to determiune AE(O,t) from equation (22), and the additional measure-
]

ment of the isobaric (1 bar) temperaturc dependence of the dielectric rcsponse,

L

eT 0(0), and the corresponding appropriate high pressure and temperature depen-

dence of eL(O) to determine AE(O,t) from equation (24). The lattice vibration
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frequency for the g ~ 0 transverse optic mode in the alkali halides is most
conveniently studied via (conventional) far infrared spectroscopic trans-
mission measurements. This laboratory has developed high-pressure far
infrared techniques sufficiently so as to facilitate the necessary deter-

minations of wTo(O,t) and wT,P(O’t)°

(3) Determination of AA(O,t,wt) and P(O,t,wt)

At T =0K and at zeropressure, equation 21 becomes

[wge0,)3% = [u"(0,0]% + w 0,e385¢0,e,0, ") (25)
t
where wt' = UOO(O,t) (26)

while at a temperature T and a suitably chosen applied pressure P so as to
‘ maintain the crystal volume at that found for the crystal at OK and zero

! pressure, equation 21 becomes

luy 0,017 = [e"(0,01% + "0, 0082 (0,¢,0) (27)

) which leads to 2 )
[wT.P\O’t)] - [moo(o.;)l

, A N "o )
‘ AT(O’t’wt) 85(0,t,w ") 20390, 0) (28)

(w. (0,:)]? - [w. (0,t))°
TP 90 (29)

2

ZwOO(O,c)

-A'(T) ' (30)
Equation (30) therefore allows an experimental determinztion of

the change in the anharmonic self-energy between a temperature T and OK via

suitable studies of the temperature and pressure dependence of w(0,t).

AS(O,:,wt') 15 not necessarily zero because anharmonic interactions can per-

sist in the presence of zero point fluctuations. However, experimental esti-

mates of AS(O,t.Ut') can be made as follows. For temperatures close to the Debye

‘I‘--====ll-======;...;.;i;...._._..____....______.__.__.__.. o o
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temperature and above, it can be shown that the thermal population factors
vary linearly with T and also that the leading terms in both the cubic and
quartic anharmonic contributions to A?(O,t,wt) are linear in T. If such a
linearity is found for A'(T), therefore, extrapolations of these linear
parts back to T = 0 will yield an intercept of Ag(O,t,wt') and hence

A;(O,t,mt) can be determined from equation (29).

(4) The Determination of AALO,t,Q) and I'(0,t,0)

A simple cubic material, such as an alkzili halide, has a singie
branch of transverse optic phonons and the lat<ice contribution to the
. . L . .
dielectric response at a frequency 1, € (1), is proportional to the Fourier
transform of the propagator for such phonons with the wave vector g~ 0. The
Fourier transform of the propagator leads to a complex lattice contribution

to the dielectric response at a frequcncy O of the form(l’z)

h 2 2 :

w0,1)2 + 270, )p(0,8,0, - 02

2
where S({1)” is the oscillator strength associated with the 9= 0 transverse
optic mode and is related to the effectiwe dipole moment between the ions in
the crystal. The mod= anharmonic self-energy and the damping can be expressed

21)

in terms of ihe dielectric response of the system as

2 E ‘
ahc0,c,0) = ¥ {wh(o,:)[s(n)zn'm) - 1) + _59___} - 470, ,  (32)
w (0,t)
and
h " 2
re,t,Q) = - & (OLF)WZ(Q)S(Q) . (33)

- A .
‘ -
hh---n--‘ln---u-nn-h-n-nn-dln-!.iiﬂiﬂhnillii-ﬂi-n-u =
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nl(n) = [e'(ﬂ) = e_(‘f)] ’ (34)

[e'(@ - e=)]? + en@)?

and

1) = €7 (@) , (35)
[e (@ - e(@)]? + en(?

where ¢'(Q) and €"() are the real and imaginary part, respectively, of the
(total) dielectric response of the system.

Equations  .2-35 reveal that experimental determinations of the
frequency dependence of AA{O,t,Q) and T(0,t,R) can be made if values of
wh(O,t), S(2), N'(R) and T'"(2), and AE(O,t) can be determined. We have dis-
cussed the determination of wh(O,t) and AE(O,t) in section C(2) above.

(22)

Bilz et al. and Cowley(z) have shown that the oscillator

strength S(ﬂ)‘ has only a very weak frequency dependence compared to that
. s A - . (18,23)
arising from 47 (0,t,0) and I'(0,t,Q). Furthermore, Lowndes and Martin
have sho.n that S(O)2 has only a verv weak temperature dependence. At T = 0
and Q = 0 the dielectric response described by equation (31) reduces to a
good aprroximation to S(O)2 z:eL(O) and so values of S(Q)2 pay be obtained
ro a gcod approximation from values of eL(O) which Lave previously been
reported by this author.(ls)
Equations (34) and (35) reveal that the frequency dependence of
N'(Q) and 1" (Q) are determined by a knowledge of <'(Q) and €"(l) and

€(®). €(») has little temperature dependence.(ls’ZJ)

We have used disper-
sive Fourier transform reflection spectroscopy (DFTS) to determine ¢'(Q)

and €" (1) with high accuracy. DFTS will allow measurements of €'(Q2) and

€"(Q) to be made simultaneously to an accuracy of + 2% throughout the far
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infrared region (5-600 cnrl). It is to be noted here that the tempera-
ture measurements of ¢’(f) and ¢”(f) need to be determined only at zero

pressure in order to determine AA(O,t,CD and I'(0,t,0).

(5) Experimental Techniques

A variety of experimental techniques were needed to measure
the various parameiers required in the determination of AA(O,t,O), ro,t,Q)
and AB(O,t) (see equatioas (32)-(35), (22), (24)). jE(O,t) was deterwived
in two separate ways: through (convertional far infrared Fourier transform
spectroscopic studies of the phonon frequency and through studies of the
low-frequency dielectric response, both made at high pressures and variable
temperatures. The determimation of AA(O,t,Q) and I'(0,t,Q7) required the use
of Dispersive Fourier Tramsform Spectroscopy to measure the frequency

dependence of the complex dielectric response,

(a) (Conventional) Fourier Transform Specrroscopv

Cubic ionic solids like_the alkali and thallium halides have
one q = 0 transverse optir mode which is most conveniently studied tjy far
infrared spectroscopy. The frequencies and lifetimes of these modes ate
readily determined from suitable measurements of the normal incidence
transmission spectra of thin films of the material under investigatiom,
Electromagnetic analyses of thin-film behavior shows that the minimum ir. the
spectral transmission for such a thin film occurs at w(0,t) = @, providing

the film is thin compared to the vacuum wavelength of the incident radia-

(24)

tion. A similar analysis reveals that ZT(O,t,uE) is determined by the
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spectral damping measured at a transmission T', where T' is given by

(o]

T' =

with To being the transmission at w(0,t). The use of thin film transmission
studies, therefore, allows a direct determination of w(0,t) and ZT(O,t,wt)
without lengthy analysis of the data, as would b¢ required usins, reflection

data from bulk samples.

Values of w 0(O,t) and W, (0,t), which were required to determine
bl

T T,P
AE(O,t) (see equation (22)), were m2asured Ly transmission studies en thin
films using coanventional far infrared Fourier Transform Spectroscopy.
Values of mT,O(O’t) were also obtained from the far infrared DFTS measurements
(to be discussed belos) made in reflection from bulk single crystals and
hence these allowed a check on these measurements. It is to be noted that,
because of severe technical problems, the DFTS technique cannot as vet be
used with samples under pressure and hence no check . alues of mTP(O,t) were

obtained.

The measurements of w(0,t) were obtained by means of Fourier

Transferm Spectroscopy using Michelson interferomcters. A germanium bclumerer
(Infrared Laboratories, Tucson) operating at 2 K, was used as a detector in

-1 . .
the frequency range 3-300 cm *; a Golay cell was used at higher frequencies.

7

(b) High Pressure Fourier Transform Spectroscopv

The requirements of hydrostatic pressure containment and far-

infrared spectroscopy are somevhat conflicting. The first requires small
apertures for maximum strength while the second requires large apertures to
provide maximum energy throughput from the comparatively weak far-infrared
sources. These requirements are further complicated because of the scarcity

of readily available window materials which satisfy the competing demands

i---n======55' e s o+ cansineiis oo .
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of strength and transmissivity in the far infrared. As a result ¢ these
difficulties, much of the very limited far-infrared high-pressure research
has been confined to date to work achieved with the opposed diamond anvil

(25) When used properly this cell is a powerful tool in the very-

system,
high-pressure domain, but, in the important 0-10 Kbar range involved in the
present work, reliable far-infrared measurements are difficult to perform
with this cell. This 1s primarily because of ths difficulty in accurately
determining the system operating pressure but also because of the inherent
difficulty of achieving true hydrostatic pressure conditions because of
residual pressure gradients across the anvil faces. The consequences cf
these problems have been that it i difficult to precisely deté:mine the
pressure dependence of mode eigenfrequencies, especially at the low pressures
necessary for the evaluation of u&’P(O,t), and it is virtually impossible
to reliably measure the (small) pressure dependence of the associated line-
widths using the dizmond anvil system.

Accordingly, this group has developed a high-pressure far-inrrared

(26) and this is 1llus-~

cell which goes some way to solving these problems,
trated in figure 1. The cell body, window mounts, &nd reraininyg closures
were machined from 4340 alloy steel and then heat treated to a hardness of
RC45 giving aAyield strength of 14 Kbars. The critical bores and surfaces
of the cell and its components were grouud and honed :o size after the
hardening process. The cell body measures 17 X_Ih X 10 cm and fully assem-
bled the czell has an effective speed of £2.4.

The window mounts used in the cell give a supported to unsuprorted
area ratio of about 3 with an unsupported port diameter of 5 mm. The window

high-pressure seal is achieved by lapping and polishing the mating surfaces

of the window and its mount to be flat and parallel to better than 3004.




The windows are prevented from sliding off their mounts by brass retaining
rings attached to the window mounts. The window mount pressure seal is
. . achieved using a stainless-steel, brass, and Teflon packing assembly.

In choosing both the cell windows and the pressure transmission
medium, care must be used to avoid materials which have characteristic
electroragnetic re#onances in the spectral region under investigation. The 3

choice of materials available for both window and pressure transmissioa

media for far-infrared service is extreuely restricted however. For windows .
we have used i-in.-thic} fused quartz for the spectral range below 125 cm-l
and 4-in.-thick silicon for the spectral range 125-400 cm-l. For a pressure
‘transmission medium we have used either helium or argon gas since these

exhibit no characteristic far-infrared resonances as do most of the organic ?3

oils and molecular gases conventionally used in high-pressure research.

Figure 2 shows the experimental arrangement for a high-pressure
far-infrared transmission experiment. The high-pressuve cell is located in
an isolated evacuated thick-walled module B designed to protect the infer-
ferometric and detector modules A and C, respectively. The cell window axis
is delibefataly chosen to be off line with both the entrance and exit ports
to module B to avoid any possible damage to the interferometer or detector
due to a hizh-pressure window failure,

The hydrostatic pressure for these experiments was generated i
from a two-stage gas compressor. The pcessuré was measured using a suitably
aged and calibrated wanganin cell. With this Bigh-pressuré spectroscopic
arrangement we were able to make spectral studies in the far infrared under
truly hydrostatic pressure conditions wich a pressure ac~uracy of better

than + 17 whilst at the same time achieving signal-to-noise values of better

than 100.
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(¢) Low Frequency Dielectric Constant Measurement

The low~-frequency dielectric response, ¢(0), was determined via
three-terminal capacitance measurements made in the frequency range 1-100

(17,23,27) The capacitance measure~

kHz with a measuring accuracy of 0,17%.
ments were recorded on a General Radio model 1615A transformer=-ratio-arm
bridge used in conjunction with a tuned amplifier and null detector, The

measuring electrodes were evaporated onto the single crystal samples using

gold as the electrode material,

(d) Dispersive Fouricr Transform Spectroscopy

In order to determine the frequency dependence of AA(O,C,Q) and
T(0,t,0) from equations (32) and (33), it is necessary to precisely deter-
mine the dispersion of ¢’({)) and &”(Q).

The conventional method for determining e’(Q) and ¢”(Q) is to
measure the power reflectivity, R(Q)), at near normal incidence over as wide

a spectral range as possible, and then to obtain the phase spectrum, @(Q),

by calcuiation from the Kramers-Kronig relation(zs)
«©
2 1
o =2 | i"‘?’—ﬂ—% a’ . (37)
a0 =0

In this exprecsion r(Q)explip(Q)] is the complex amplitude reflection
coefficient énd r(0) = /R{s). From this ¢’(Q) and €”(Q) can then be obtained
from the Fresnel relations. The main problem with this procedure is that

the complete dispersion of R({}) must be measured, but this is often not
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possible especially if there is significant dispersion at very low-
frequencies (such as for soft modes) or at high frequencies, which
therefore necessitates other measuring techniques to be utilized to
complete the measurement of R((}). A second problem is that ¢(Q) is
not well determined in those frequeucy ranges where r(Q)) = O because
of the inaccuracies in measuring the magnit-ude of 1 :{}).

Conventional Fourier transform spectroscopy, as described
in a previous section, yields the power spectrum from a sample
placed externally to the interferoneter., However, if the sample is
inserted in one arm of the Michelson interferometer, then it is
possible to perform amplitude-phase or dispersive Fourier transform
spectroscopy.(lg’zo) The asymmetric sample-interferogram from such
spectrosccpy can be transformed into the cpectral functions of the
phase and amplitude of the reflectance, from which the real and
imaginary parts of the complex dielectric response of the system can
be measured directly, and withnout having to measure the infinite
spectrum, Furthermnre, since DFTS measures r({Q}), rather than
rz(O) = Rf7) as i. conventional spectroscopy, it has an autometic
improvement in the accuracy of ¢/(Q) and ¢"(Q) which is especially
important as r(Q) - 0. 4

The apparatus used by this group is illustrated schematically

in figures 3 and 4.(29-31) The fixed mirrzor of the Michelson interferom-

eter is replaced by an optically flat reflector whose surface is divided
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up into an outer metallized ring C and two inner semicircular rings, one
of which, B, is metallized and the other is the sample, By an arrangement
of opaque screens each of these parts may in turn be used as the reflector.
In practice, the outer ring is first used to align the whole reflector so
that the incident beam is perpendicular to the surface. Since it has a
large radius it provides a readily reproducible 2lignment. Then a cpecinen
interferogram is recorded with part A éxpcsed and a refarence interferogram
is recorded with part B exposed., The interferograms zre Fourier trans-
formed and the educed specira are ratioed to give ¢the complex reflectiviry.
To reduce systematic errors caused by acymmetry between the two sides of
the instrument this output spectrum is re-ratioed against a ratioed cali-
bration spectrum obtained in a separate experiment with both parts A and B
metallized.

Although the specimen is on 2 coilimated beam, the method is
suitable for measurements on fairly small samples of 2rea of 1 cm2 or
larger, which is satisfactory for all the materials studied in this research
project.

The procedure of metallizing part of the sample surface for use
as a phase reference surface therefore allows tic sample temperature tc be
changec and overcoﬁes the problems experienced by earlier workers usirg TFTS
which coufined their measurements to room temperature only.(lg’zo’3 -34)
The group at Northeastern University, in collaboration with Dr. T. J. Parker
of the University of Lﬁndon, has used this technique to determine ¢’(Q)
and ¢"(Q) for several alkali halides (NaF, NaCf, KCZ, KBr, KI, RbCZ, RbBr
and RbI) in the range 100-300 K, and hence to determine AA(O,t,Q) and

F(O,t,Q).(21’35’36)
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D. Results and Discussion

a) Theoretical Calculations of AA(D,Q,Q), T'(0,t,0) and AE(Q,t)

Figure 5 shows the frequency dependence calculated for the
different contributions to ZA(O,t,O) and T'(0,t,(}) for NaBr and Figure 6
shows the calculated frequency dependence of AA(O,t,Q) for NaBr at dif-
ferent temperatures. Such results are generally typical for ali of the
alkali halides crystallizing in the NaC4 structure,

Tables 1«4 summarize our calculated resuvlt:s for AE(O,t),
AA(O,c,O), AA(O,t,wt) and T(O,t,wt) and their component contributions
for the lithium, sodium, potassium and rubidium halides, respectively.
The data for AA(O,t,mt) and P(O,t,wt) and their respective components are
given for the calculated value of W,

An analysis of the data in Tables 1-4 reveals a number of over-
all qualitative features which should bLe commented on:

(i) The frequency-independent coniribution AA(O,t) is always
dominated by the positive contributions from the first-ordes quartic term
A(a)(o,t); A(S)(O,t) is always less than 107 of A(Q)(O,t) even above the
characteristic Debye temperature,

(ii) EA(O,t,O) is always dominated by the negative seccnd-

order cubic term A(G)(O,C,O). Although A(s)

(0,c,0) is generally less than
107 of ZA(O,t,O) at low temperatures, it has a much stronger temperature
dependence and can be as much as 307 of ZA(O,C,O) at the characteristic

Debye temperature.
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(1i1) aA(0,t,0) is always positive at low temperatures because of
the dominance of the tirst-order quartic term A(4)(0,t), but this usually
becomes negative at higher temperatures because of the stronger temperature
dependence of the negative contributions of A(6)(0,t,0), A(s)(O,g) and
a(8) ¢0,t,0).

(iv) ZA(O,t,wt) is always dominated by the negative second-order
cubic term A(6)(0,t,wt). At low temperatures A(a)(O,t,wt) is always less
than 107 of ZA(O,t,mt) but because of a strong temperature dependence it
can be as much as 407% of ZA(O,t,wc) at the characteristic Debye temperature.

(v) AA(O,t,mt) can be either positive or negative at low tempera-
tures depending on the balance between A(4)(0,t) and A(6)(0,t,mt). At
higher temperatures AA(O,t,wt) is generz1ly negative, however, because of
the stronger temperature dependence of the negagive contributions from
8(6)(0,t,0,.), 4(87(0,t.0), and 4®)(0,0).

(vi) P(O,t,mt) is totally determined at low temperatures by the

T(s)(o,t,wt) has a nuch

second-order cubic terms, F(G)(O,t,mt). However,
stronger temperature dependence than F(6)(0,t,wr) and both contribution: to

P(O,t,ut) are generally very close in magnitude at the characterisiic Debve

temperatire.

b) Experimental Results for AA(O,t,O), AA(O,t,wt), F(O,t,wt) and AE(O,t)

Using the appropriate measurements of the temperature and pressure
dependence of w(0,t) and £(0), we have determined experimental values of

AE(O,t), AA(O,t,O) and AA(O,t,ut) via the procedures outlined earlier, and
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these values are summarized in Tables 5-10 for the lithivn, sodium, potassium,
rubidium, cesium, and thallium and silver halides, respectively. Table 11
summarizes the temperature dependence of 2F(0,t,wt) for all these materials.
A number of qualitative trends emerge from these results: (i) the
Ag(O,t,wt) are generally quite small and are no more than a few percent of
moo(o,t). (11) The A:(O,t,wt) for the silver and alkali halides crystalliz-
ing in the NaCl structure are generally negative in sign at all temperatures
and increase in magnitude with increasing temperature. (iii) The A:(O;t,wt)
for the thallium and 2l1kali halides crystallizing in the CsCl structure may
be negative or positive at lower temperatures but are always positive at
higher temperatures. (iv) The A?(O,t,mt) have a sumaller temperature depen-
dence than AE(O,t) for all the materials studied except the thallium halides.
Tables 5~8 also compare the theoretical calculations and experimental
results for the anharmonic self-energies of the experimental lithium, sodium,
potassium and rubidium halides. The r-sults have allowed separate decermina-~

tions of AE(O,t) to be made at @ = 0 and 2 = w Ecaation (7) shows AE(O,C)

t*
to be a frequency-indcpendent quantity andcthe experimental results generally
support this within the limits of the experimental accuracy. The exceptions
to this are the results for the cesium and thaliium halides at higher tem
pecratures, but these differences may indicate the importance of the voliume
dependence of the dipole moments associated with the transverse-optic modes
in these uaterials which have been neglected in the determination of sE(c,t)
at Q = 0. It is for this reason that the results for AE(O,t) determined at
Q= w, are considered more reliable, and a comparison of these with the theo-
retical results reveals a good agreement within the accuracy limits for all
the materials.

The results for A?(O.t,O) are qualitatively very good in that both

experiment and theory show a reversal in sign as the temperature is raised,
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and furthermore show this reversal to take place at about the same tempera-
ture. Quantitatively, the low-temperature results are in good agreement for
all the materials and this reasonable agreement is maintained for the potas-
sium and rubidium halides at higher temperatures. For the lithium and
sodium halides, however, serious discrepancies arise between the two sets

of data at higher temperatures, with the calculated results showing a much
stronger temperature dependence.

The agreement between theory and experiment is less gooa for
A%(O,t,wt). Qualitatively, the experimental results suggest that the second-
order anharmonic contribucions alviays dominate so that Aé(o,t,wr) < 0,
whereas the calculated results reveal that this is not always so at the
lower temperatures. Quantitatively, although the vesults for many of the
compounds agree within the error limitations, the experimental results gen-
erally tend to vary somewhat faster with temperature than the calculated
theoretical predictions. The preceding comments have been made for the
calculated values of A%(O,t,mt) determined at the calculated value of w,.

In order to test the sensitivity of the calculated values of A?(O,t,wt) to
any frequency dispersion, we have also listed values of A?(O,t,wt) calculated
at the experimentally determined values of w, in Tables 5-8. With the excep-
tion cof the higher temperature data for LiBr and Lil (which in #ny case must
be treated with some caution for the reasons given earlier),the two sets

of calculated values for A%(O,t,wt) are quiteAclose and generally differ at
most by no more than + 15%. However, the values of A?(O,t,wt) calculcted at
(wt) are generally in no better agreement with the experimental valucs

exp

A
than the AT(O,t,wt) calculated at (wt)calc'

The results for F(O,t,wt) show the theoretical predictions at low

temperatures to usually be somewhat smaller than the experimental values
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and, as the temperature is increased, to generally have a somewhat faster
temperature dependence than the experimental results. The calculated
theoretical results at the higher temperatures are generally in reasonable
agreement with the experimental results for the lithium and sodium halides
but are significantly bigger than the experimental results for the potassium
and rubidium halides.
The experimental studies of the prescure dependence of r(O,t,mt)
suggest thac its volume dependence is smali. Equations (17) and (18) re-
! veal that such a volume dependence can arise only from that of the anharmonic
coupling coefficients or from that ~f the uh(q,j). We have attempted to
: calculate approximately what Eqs. (17) and (i16) would predict for the volume
dependence of P(O,t.wt) for a number of alkali halides by allowing all the
i wh(q,j) to have the same pressure dependence as that measured for w(0,t)

{ and by using values of r, and B suitably corrected for the effects of pressure.

Such assumptions lead to the conclusion that F(O,t,wt) will always decrease
{ with increasing pressure by (1-2)7% per kbar. Altho-.gh the absolute magni-

tude of this calculated pressure dependence for F(O,t,wt) is in agreement

v

with that found experimentally, these results do not explain the small in-
creascs with pr§35ure found for F(O,L,mt) for sume materials.

The reason for the less good agreement between the calculated and
experimentil anharmonic self-energies at Q = w,. is not clear. The discrep-

ancy between calculation and experiment for F(O,t,wt) at low temperaturcs

could simply arise from an underestimate of F(6)(O,t,wt) or r(a)(o,:,wt) or
from some sample artifact in the low-temperature experimental measurements:
this latter would seem most unlikely, however, in view of the equivalent
results that we obtain from single-crystal reflection measurements and thin-

film transmission measurements. The generally good agreement between cal-
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culation and experiment for the high:r temperature r(O,t,mt) for the sodium,
potassium, and rubidium halides suggests, but does not prove, that the cal-
culated form of ZA(O,t,wt) may be correct; if this were true then this in
turn would suggest that the general disagreement between calculation and
experiment for A%(O.t,wt) might arise from ithe calculation of AA(O,t) (see

Eq. (9)).

¢) Experimental Results for AA(O,t,Q) and I'(0,t,2)

Figures 7-34 show the experimental determinations of the frequency
dependence of AA(O,t,Q) and I'(0,t,R) for NaCl and R’bCl at 105K and 3GCK. In
all we have measured the ‘requency dependence of the self-enersies, as a
function of temperature, for NaF, NaCl, KCl, KBr, KI, RbCl, RbBr and RbI.

Our results indicate that there is a reasonable qualitative agree-
ment, within experimental error, between the experimental and theoretical
values of the self-energies for all materials. Quantitatively, the recults
are in very good agreement for the rubidium and potassium halides, but there
are marked discrepancies between the two sets of data for NaF and NaCl, as
the figures show. It should be ncted that these measurements are in gcod
agreement with our earlier measurements of the self-energies at specific

frequencies, i.e. AA(O,t,O), AA(O.t,wt) and P(O.t,wt).

d) Conclusion |
In assessing the obvious qualitative and quantitative agreement for

the calculated and experimental determinations of these anharmonic self-

energies, it is useful to place in perspective the errors associated with

each kind of determination.

Given the approximations contained within the anharmonic theory, the

A
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errors associated with the calculated values of the anharmonic self-energies
stem primarily from those involved with the mh(g,j) and the anharmonic force
constants, The errors associated with the mb(s,j) are difficult to assess,
but it can be stated that our lattice-dynamical calculations are in close
agreement with available low-temperature dispersion curves, reported from
inelastic neutron scattering experiments, with the most extreme diffcrences
being less than 107 over small regions of the Brillouin zone, and that an-
harmonic calculations for a few compounds using wh(g,j) values differing
uniformly by 10% throughout the Brillouin zone lead to only 10% changes in
the real and imaginary anharmonic self-cnergies. The anharmonic force con-
stants are sensitive to the input values of r, and R, and in both cases
values of these at low temperatures are needed, Values of B are typically
determined directly at 4 K with an error of about + 27%. Such an error in 8
will lead to errors of 2% or less in th= various coefficients associzated
with the anharmonic force constants. Although L is wsually determined
quite precisely at 290 K to better than z 0.1% via X.ray measurements,
values of r, at lower temperatures are often not directly wmccsured but are
determined from the known 290 K value of r, and the known thermal-expansion
dzta. This leads to a typical error of about = 0.2% in rat 4 XK. Suni

an error will generate errors of between 6-10% “or the various coefficients
asscciated with the anharmonic force constants., The accumulated errors

in these coefficients will, of course, lead to errors in the individual
contributions to the different total self-energy quantities. It should be

(&) (8)

recalled that A‘;(o,:,o) is obtained as a sum of A'*’(0,t), 2'%'(0,t),

A<6)(0,t,n) and A(s)(o,t,ﬂ), and although the errors on the individual con-
tributions to the self-energy stemming from errors in T, and 8 are no larger

than about 107, the accumulated error om Ag(o,:,n) is considerably larger
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because of the opposite signs of these individual contributions and because
of the often close equivalence of the two dominant, but competing, terms

54 (0,t) and A(6)(0,t,ﬂ). However, T'(0,t,R) is simply the sum of two
components, F(6)(0,t,n) and r(s)(O,t,Q), both of which are accurate to about
+6%, and hence the accumulated error on '(0,t,Q) will be smaller than that
for A:(O,t,n). In Tables 5-8 we have listed our estimates of the possible

errors associated with the different calculated self-energy compon:znts based

on the known errors on ro and 8 only.

The errors on the experimental determinations of AE(O,t),
A?(O,t,ﬂ), and P(O,t,wt) can vary significantly. The errors on the measured

Wy 0(O,t) are generally quite small and ar worst no lzrger than about +17,

but the errors omn wT P(O,t) will be somewhat larger than this due to the

error in calculating P, The experimental and theoretical results strongly

suggest that the zero-temperature anharmonic self-energies are quite small,

so that the use of the approximation uUO(O,t) ® wh(O,t) should not generate

errors of more than a few percent in the dcterminations. Consequently we

believe that the dererninations of AE(C,t) and A'(T) are generally accurate

- A
to better than +1.5 cm 1, of course, the determinations of AT(O,t,wt) are

somewhat worse than this dependiﬁg on the accuracy of the extrapolation
proceldure used to determine AS(O,:,wt'). The errors on tne measured
F(O,t,m') are de;ermined to be no better than #+15% for the longer phonon
lifetimes and no better than +257% for the shorter phonon lifetimes.

In conclusion, therefore, we have found a good agreement between
theory and experiment concerning the sign, magnitude and temperature depend-
ence of q N 0 transverse optic phonon self-energies in a range of weakly

anharmonic systems. Although discrepancies do exist, they are generally

within the errors assoclated with either the calculations and/or the exper-
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iments. For the range of temperatures and frequencies covered by our work, i

therefore, the current theories of weak anharmonicity appear to satisfac-

torily describe the anharmonic interactions in materials like simple cubic ‘

ionic solids.
|
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TII. STRONGLY ANHARMONWIC SYSTEMS: DISPLACIVE FERROELECTRICS

A. Introduction

Over the past two decades the existence of a soft mode has been observed
in many ferroelectric materials. Soft mode behavior, that is the rapid move-
ment to lower frequencies by a lattice mode as the temperature is decreased,

was first proposed by Cochraé37)and Andersoé38)

to explain the anomalous tempera-
ture dependence of the dielectric respouse of ferrcelectric materials.

As discussed in the carlier sections, the temperature dependence ¢f any
lattice mode frequency arises through the anharmonic terms in the lattice
potential energ;. As shown in the previcus secticn, the hermitean self-energy
contributions to the normal mode frequenmcies in most systems are smaller than
the harmonic contributions. In displacive ferroelectrics, however, it was
theorized that the anharmonic contributions to the soft mode were larger than
the harmonic contributions and were thereby responsible for stabilizing the
paraelectric states. In this section we describe our experimental measure-
ments of the temperature and frequency dependence of the self-energies asso-
ciated with the soft mode in disrlacive ferroelectries which were the first to

directly confirm these theoretical predictions.

B. Experiuental Results for AA(o,t,O) and AE(QJt)
39)

[
Cowley has discussed the stability of an anharmonic crystal using
the techniques of quantum field theory and has analyzed the dielectric response
of such an anharmonic crystal. The lattice contribution to the complex di-

electric constant at a frequency Q is of the form

h 2:2
v 0. )7g (38)

L
e'(R) =)
i mh(o,j)2 + th(o,j)D(o,j,Q) -

where mh(o,j) is the harmonic frequency of the jth qQ z O transverse optic

mode and £, is its associated oscillator strength. In the following discussion

3

sk it

T M e S e R e s




-35- |

we shall assume that the dielectric response is determined primz ily by the
summation term in equation (38) associated with the soft mode and shall ne-
glect contributions from the other q : o transverse optic phonons and any

temperature dependence of the f The self-energy D(o,j,) is defined by

i
equations 5-18 of the previous section.
At Q = o, the self-energy terms associated with the soft-mode can be

related to experimental parameters involving the lattice contribution to the

: \
static dielectric response as follows:(ao’
b E sl (o))
20 " (o0,t)YA (o,t) - T (39) [
h 2 h A L L ‘
w (o,t)” + 2w ,t)4, (o,t,0) se (0)] + e (o)
T, P T
and
2
Wo,0)” + 2a"(0,008%0,80) €1, (o)
T i _ (40)
h 2 . & A =1 T = A(T) |
w (0,£)" +20 (o,t)4, Gt,0) & (0)+ae (o) ]y '
i i :

where (o,t) d«notes the soft mode, Ae:L(o)}P is the change in eL(o) in raising

the temperaturc from T, to TK isobarically at 1 bar, AeL(o)]T is the change in

i

cL(o) in raising the predsure isotfermally at a temperature T so as to restore

the volume of the crystal to that which it has at TiK and 1 bar pressure, and

Ac,Ir'(o)]v is the change in EL(O) on raising the temperature Ti to T¥ isobarically

at the crystal volume at TiK and 1 bar pressure. The equations show that

suitable measuremer.ts of the temperature and pressure dependence of eL(c), |

therefore, will lead to assessments of the soft mode self-energy components.
Figures 15 and 16 show the results of such measurements for the tempera-

ture dependence of the soft mode self-energy ccuponents for KTaO3 and SrTiO3.

An estimate of wh(o,t)2 can be made from this data. At sufficiently high

temperatures, if the thermal population factors contained in the theoretical
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expression for AA(o,c.o) are expanded in terms of tw/kT < 1, it is found that
the leading terms in both the cubic and quartic contributions to AA(o,t,o) are
linear in T. Tﬁe temperature dependence of the function A(T) is shown in
figures 15 and 16 and does . appear to be reasonably linear with tempera-
ture thereby implying a linear dependence of AA(o,t,o) on T. An extrapola-
tion of this linear part back to T = o should therefore vield an interept of

approximately mh(o,t)zlmri(o,t)z. Using measure! low-temperature values of
i

2 2 24 _ 2 Y
wTi(o,t) of uo(o,t) = 0.35 X 10 Hz for KTaO3 and wloo(o,t) = 1.79X 1¢ Hz
for SrTiO3 yields valuass of wh(o,t)2 = -0.004 X 1024 Hz for KTa03 and
WPo,t)? = -1.43 x 10%* for srrio..

3

Our results imply, therefore, that the soft mede harmonic frequency in

SrTiO3, and probably in KTaOB, 1s imaginary and, furthermore, is stabilized
by the large anharmonic self-energy components th(o,t)AA(o,t,o) which domi-
nate all the self-energy contributions combined.

C. Experimental Results for AA(Q)t,Q) and I(0,%,0)

Following the theoretical and experimental analvses presented in sec-
tion II, we have also determined the frequency deperdence of the self-energy
terms th(o,t)AA(o,t,Q) and th(o,t)r(o,t,ﬂ) via Dispersive rourier Transform ’
Spectroscopy. The frequency dependence of the self-energies determined in

this way are shown for KTa0, in figures 17 and 18. The results reveol

3

again that these soft mode self-energies are extremely large compared to those

found 3n weakly anharmonic systems. In addition, these self-energies have a

st.rong temperature dependence throughout the frequency range covered. It is !
of interest also to note that the determinations of th(o,t)AA(o,t,Q) aL

fl = o determined from the static dielectric constant measurements discussed

in part B of this section are closely consistent with the values determined

via the DFTS measurements.
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Iv, HYDROGEN BONDED FERROELECTRICS

A. Introduction

Recent discussions of the transition in hydrogen-bonded ferro=-
electric systems have examined the consequences of interactions between the
ferrcelectric mode and fluctuations in the phonon density. Coombs and
Cowley(z) have used a weakly anharmonic theory, within the framework of the
igndau theory of phase transitions, to consider the coupling of the ferro-
electric mode to fluctuvations in the acoustic phoncn density, and they find
a response function for the ferroelectric mode of

2w,

Gy = -5 T B (41)
w” = ey, =0 - (z Li/(l - iwr)]

Here 0; is the harmonic ferroelectric mode wavenumber, Ei the renormalized
ferroelectr’~ mode wavenumber containing conventional anharmonic salf-energy
sontributions, Y the mode damping, T an average liferime for the acoustic

ohonon density and Li is given by

. 72(!.)i 2
L = EE;—‘V(O,I,“l)‘ n.(n, +1) (42)

where the V roefficients are seconc¢-order cubic anharmonic coupling coef-

(4)

ficients and the n, are thermal population factors. Young and Elliott

have extended the pseudospin model of Kobayashi(él) to include coupling
between the soft pseudospin mode and fluctuations in the phonon density via
two~phonon terms in the Hamiltonian, and they find a response function for

the ferroelectric mode of

X

Gy (w) = —5— = =
EUOR@ - oy - o)) = [T/ - 10D)
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Here T is the energy of the pseudospin mode, (cx) the thermal average of

the spin operator and L is given by

2n,(n, + 1)
2
- L z lveo,1,-n|" 22— | (44)

1,2

[l
|

The responses from these two different theoretical approaches are structurally
identical, but differ from the characteristic respons: of normal phonous by
the addition of a relaxing self-energy contribution. This has two important
consequences: it predicts the existence of a quasl-elastic central component
and the divergence of the ferroelectric mode susceptibility at a temperature,
TA’ below the characteristic clamped Curie-Weiss temperature.

Attempts to determine the magnitude of the relaxing self-energy
have been made for a number of hydrogen-bonded ferroelectrics via experiments
to measure TA and via searches for the cenctral component. The former suffcr
from the fact that the ferroelectric mode wavenumber is determined from
extrapolations of data which are deduced from fits to a simplified, and
possibly ambiguous, model involving the coupling of the ferroelectric mode
to other phonons.(az-aa) Such experiments generslly have led to the con=-
clusion that, if present, the relaxing celf-energy is quite small, but the
inaccuracy of the method often precludes a definitive statement as to whether
the rclaxing self-encrgy is finite or not. Although Lagakos and Cummins(AA)

have reported on a preliminary observation of a central component in

KHZPO4 (KDP) which also suggests that the relaxing self-energy is quite small,
(45)

have found no evidence for a central component in

the same authors

CsHZAsoa (CsDA).
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The possibility of a separate determination of the magnitude of

the relaxing self-energy has been pointed out by Young and Elliott.(a)

They
have commented that the inclusion of spin-two-phonon coupling in their

Hamiltonian also causes a splitting of the E-modes in the ferroelectric phase
where the corresponding singly degenerate modes have symmetries of Bl’ BZ' |

This splitting will be in addition to any reststrahlen splitting, and may

be distinguished from it because their combined effect is dependent on tue

propagation direction of the phonon. They predict the splitting to be given |

by f
QAZ - mBz = SZ for E along (0,0,1) (45)
ukz - sz = 52 + Rz for 5 along (1,1,0) (46)
QAZ - mBZ = (S4 + Rl’);i for k along (1,0,0) 7 2

where s2 is the relaxing self-energy splitting,

4y {0®IV(0,1,2)
§2 - T : (48)

2
and R is the reststrahlen splitting,

2 2 2
R o (49)

where wi and o are the zone-centre longitudinal and transverse optic wave-

numbers, rospectively,

Suitable experimental measurements of any E-mode splittiug,
therefore, can lead to separate estimates of the magnitude of the relaxing

self-energy. Such measurements can also lead to important information con-

cerning the central component because the anharmonic coupling coefficients

that determine the magnitude of the E-mode splitting are also related to the

behavior of the amplitude and wavenumber of the central component.
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The following sections describe laser-Raman investigations by this
grod;(46) of such E-mode splitting in hydrogen-bonded ferroelectrics, the
results of which suggest that the relaxational processes responsible for the
central components have sufficiently long lifetimes as to make their obser-
vation feasible through electronic, rather than optical, techniques. The

final sections desrribe such a search via radio-frequency dielectric constant D

measurements.

B. E-Mode Splittine Inrestigations

Figure 19 shows schematically the laser-Raman scattering geumetries
used to study the E-mode splitting.

Figure 20 shows in detail the low low-frequency Bys B2 spectra ?i
recorded in the ferroelectric phase of KDP, KDA and KD*A for the three P
scattering geometries counsistent with equations (45)=-(47), and figure 21

: *
f shows the full Bl’ B, spectra for RbDA and RbD A for tvo of the scattering

2

gcometries, As these figures show, meny, but not all, of the E-modes d¢ show
definitive splittings arising from non-reststrahlen effects., For reasons we

(46)

have described elsewhere, these splittings cannct arise from eithe:
strain or birefrigence artifacts, and hence we belicve the splittings to

originate from the relaxing self-energy.

The response function given i equation (43) leads to the conclusion !
that thc ferroelectric mode will condense out at a temperature TA such that
TA < Tcx, where Tcx is the clamped Curie temperature. A measure of the
relative strength of the relaxing self-energy to the mode total self-energy

is given by o, where

L
T TN MR Ny
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This response functicn also leads to a Debye relaxation form for the central

component of

- * ‘
Im G(w) _ 4TI wr 1)
- *7
G(0) hzwz 1+ sz P3 i
where
W& - AL %

and W, is the central component wavenumber. In the high-temperature limit,
equation (51) leads to the conclusion that w0, will have a temperature
dependence given by

| 1 -aa-15

1
w = - (52)
¢ [T - Tcx(l -] 7

whilst the amplitude of the central component will be given by

o1l + ¢ .
(L - D (a + &) (33)

Im G(wc) = A

where A = llchx and ¢ is given by

c = =~ . (54)

Analogous results to those given in equations (52) and (53) can also be

obtained from the response function given by Coombs and Cowley(J) for the

ferroelectric mode., However, it is to be noted that, although the two

theories both require the ferroelectric mode to condense out below Tcx, the

_-.ﬂ..<
o b
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temperature at which this occurs is not necessarily the same because of the
different temperature dependence predicted for the ferroelectric mode by the
two theories,

The lack of information on p prevents any utilization of equation
(52) to assess the specific temperature dependence of w, . However, estimates
of the temperature dependence of the central component amplitude can be made

via equation (53) providing measurements ol Tcx ard q are available.

Tcx is readily determined with good precision via suitable dielec=

(&)

tric or elastic cnnstant measurements, & is given by 2quation (50) and as

@ = T (UL’ (s5a)

h
1 “1
Sw, 2 ]
* 3D |
1

where 6m1 is a mode splittinz from the spin-two-phonon interactions for k
along (0,0,!) as given in equation (45). Although o can be determined via
equation (50), as mentioned earlier, such calculations are not reliable
because of the inaccuracies in determining TA' The fundamencal difficulty
with equations (55a) and (55b) is that they cannot be applied to thiose modes 1
which are not doubly degenerate in the paraelectric phase and for whicn i:
splittings may thus not be observed, This requires, ultimately, that o be
estimated using equations (45)=-(47) and (55) and a means of attributing
values to Vv(0,1,~1) for those modes where measurement is not possible.
Table 12 lists values of o calculated in a number of different ways. o is
S

determined using only the measured E-mode splittings in equation (55b). o

is determined via equations (48) and (55a), by using the most consistent

!
j,
!

!
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values of S2 determined from equations (46)=(47). It is to be noted that
there is little difference between % and ats, and this reflects the close
fits of the experimental data to the form of equations (45)-(47). (o) and
(a)m are calculated on the assumption that all 48 phonon branches contribute
equally to o; (@) uces the observed srlittings averaged over all 13 allowable
E-modes, whilst (a)m uses the splittings averaged over only the observed
split modes.

Table 12 aiso contains estimsics of o detecmined via equation (50)
using dats determined from studies of the temperature dependence of the

(47)

ferroelectric mode, Using measured values of Tcx (from Brody and Cummins

(48)

for KDP and from Spillman and Lowndes for the arsenate family), o, and

ap were then calculated using appropriate values of TA determined by fitting
the measurcd temperature dependence of the ferrocelectric mode of these mate-

(43)

rials (Lowndes et al., J. F. Ryan 1972 (ungublished) quoted by Lagakos

(4t

and Cummins ) to the temperature dependence predicted by the theories of

(3) (4)

Coombs and Cowley and Yourg and Clliott s respectively.

Inspection of Table 12 reveals a number of differences between the
two basic approarhes to determining -ctimates of o. Firstiy, the o values
determined from the E-mude splittings are consistently smaller than the values
determined from studies of the temperaturc dependence of the ferroeleciric
mode. Secondly, for a given anion, the o values determined from the E-mode
splittings increase wi;h increasing mass of the cation, whereas the reverse
is true for o, and ap' Thirdly, the o values determined from the E-mode

a

splittings are always positive, whereas o, and ap are negative for the deu-

terated arsenates, As mentioned earlier, T, is difficult to determine

precisely, and this is especially true for the deuterated arsenates where two
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or more low-frequency optical phonons are coupled to the ferroelectric modefAB)

thus casting doubt on the adequacy of the two coupled oscillator fit used to
determine the fcrroelectric mode spectra characteristics from the Raman
spectra; we believe this is the reason for TA > Tcx and hence for the negative
values determined for o, and dp for the deuterated arsenates,

Because of these and other difficulties ia precisely determining
the temperature T, at which the ferrcelectric mode condenses out, and because

A

X .
T, and Tc are apparently very close for the materials considered here, we

A
believe that the oy and dp values provide less reliable estimates of o than

those determined from the E-mode splittings. Although these latter do not
lead directly to an estimate of the total contributions to o, they do provide
a basis for establishing a range of possible values for «. For ianstance, %
provides a reasonably precise lower bound on ¢ since actual observed contri-
butions are included in its calculation, ."hilst (a)m provides a reasonatble,
but less distinctive, upper linit on ¢.

Figure 22 shows the results of calculating the temperaturc depen-
dence of the central component amplitude for the hydrogenated materials using
Op s {a) and (a)m for « in equation (53). Figure 23 shows the results of
similar calculations for the deuterated arsenates, Although the guantitative
details vary somewhat depending on the particular value of « used, thc gquali-
tative trends are very similar irreSpective‘of tﬁe o value used. The central
feature of importance to emerge from these figures is that, although the
central component amplitude grows strongly as rcx is approached, in all cases
this growth is curtailed by the onset of the ferroelectric transition. The
data indicate that, at the characteristic transition temperature, the largest

growth in the central component amplitude occurs for KDP and the smallest for
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CsDA. This may be an important contributing factor in explaining why

(44,45)

Lagakos and Cummins were able to find evidence for a central component

in KDP but not in CsDA. In commencing on their failure to find a central

(45) have derived two upper limits for

component in CsDA, ﬂagakos and Cummins
a: firstly, a value of 10.'4 for an unresolvably narrow central component,
and, secondly, a value of 10-2 for a central component linewidth exceeding
the free spectral rarce of their Fabry-ferot interferémeter. The values of

o determired here from the E~-mode splittings are nicely bracketed by thnese

limits, but tend to support the larger value,

C. Radiofrequency Dielectric Constant Investigations

a) Experimental Studies

Tine light scattering measurements of the E-mode splittings in
hydrogen-bonded ferteelectricé described in the preceding section suggest
that a central component may exist in these materials but at frequenciecs
which may be too small to be resolved by optical measurements. Recent
acoustic alccrnation,(ag) (50)

(51)

magnetic resonance work alsn suggecst that such relaxational processes

electron spin resonance and electron para-
do occur but with lifetimes sufficiently long as to make their observatimm
feasible through electronic, rathexr than optical, techniques. We have
therefore searched for the existence uf central components via radio-
frequency dielectric constant measurements,

In the paraelectric phase of KDP, the dielectric response measured
in the 5-80 MHz range exhibits no frequency dependence which would be charac-
teristic of a relaxation process and gencrally displays a temperature

dependence commensurate with measurements at lower frequencies. Within the
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sensitivity of our experiments, therefore, no significant evidence was found
for any contribution to the dielectric response in this frequency range
which arises from the existence of a central component.

(52) the response for CsDA in the

However, as we have reported,
paraelectric phase does exhibit a marked frequency-~dependent dielectric loss,

especially at the higher frequencies, for temperatuces just above the tran-

sition, Unfortunately, the characterictic frequency of the mechanism
associated with the dielectric loss appears to be above the 80 MHz upper

limit o our applied field frequency using this measuring technique. Although
¢’ shows a continuous decrease with increasing temperat're from the transi-
tion at 149 X SK, ¢”, especially at the higher frequencies, first grows
rapidly as the temperature is raised from the transition and then decreases
with a further increase in temperature until it is barely measurable at

about 170X,

It ie¢ difficuit to comment on the origins of the mechanism causing
this dieleciric loss in the absence of a full scan of its frequency dependence.
The results are unlikely to stem from impurities or dufects in the sample
which typically lead to relaxation tines several orders of magnitude longer
than those that could be involved here, Rather, the results are more likely
to be intrinsically related to the onset of the transition, in view ol the
growth of this dielectric loss as the transition temperature is approached. !
Although the results could be interpreted as being consistent with the
findings of L;gakos and Cummins (in the sense that if the central peak for
KDP lies at a higher frequency than that for CsDA then the optical measure-

ments would be more favorable for studying the central peak in KDP and

the dielectric measurements for studying it in CsDA), the present data for




CsDA would not seem to be described by a simple Debye relaxation form with an
amplitude growing continuously as the clamped Curie temperature at 126 K is
approached, as issuggested by the current theories.

The results for the ferroelectric phase of both materials also reveal
some significant dielectric behaviour which has not previously been reported.
For both materials, the dielectric response exhibits a pronounced dependence
on frequency which is well described by a Debye rorm of relaxatioa:

A——
1l + iwt

ce(w) = e(w) + ie”(®) = e(=) + (56)

where e€(w) is the complex aielectric response at a frequency w, e(=) is the
complex dielectric response at w > 100 MMz, A is the amplitude and 7 the
characteristic relaxation time. Data at representative temperatures, to-
gether with their associated fits to the form of equation (56), are shown in
figures 24 and 25. Table 13 summarizes values of the parameters characterizing
the Debye relaxation process for both materials. Althcugh the dielectiric
relaxation occurs at somewhat lower frequencies for ¥"? tharn for CsDA, the

relaxation data for the two materials are qgualitativ:ly similar with the t

decreasing dramatically with increasing temperatﬁre in the range

T = 0.8 Ttr to T = '1‘tr where Ttr is the transition temperature. The ampii-
tude aiso increases sutstantially over much of this same temperature

range but appears to level off close to the transition temperature for KDP
and to acztually go through a maximum about .5 K below the transition tempera-
ture for CsDA. Two further aspects of these parameters should be noted.
Firstly, e(») has a real part whose temperature depencence is weakly sug-
gestive of divergent behaviour but which is not described by a Curie-Weiss
behaviour, and an imaginary part which suggests a source of high-frequency

conductivity which is independent of the relaxation process. Secondly,

I
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values of T are well fitted by the thermal activation form
T =1 exp (E/kT)
~10 ~10
with T, = 4,114 X 10 ""s and E = 0.0466 eV for KDP, and T, = 1.586 X 10 s

and E = 0.0603 eV for CsDA.

b) Theoretical Discussion

Almost simultaneously with our observation of the central component in the
power spectrum of homogeneous polarization fluctuations in the ferroelectric phase of
RDP and CsDA discussed above, Memelstein and Cummins(53)reportaiona central compovnent
observed in the power spectrum of polarisability fluctuations in the ferro-
electric phase of XDP.

Our subsequent analysis of the results for KUP (and by implication for
CsDA, etc.) suggests that both effects may be attributed to a homogeneous expo-
nential decay of the polarization. In our dielectric experiments, the response
of the polarization due to an applied electric field,

x(w) = (SP/SE) R (57

w + io¥
was directly measured in the ordeved phase of KHZPOQ. In equation (44),
6P and SE are in the direction of the spontaneous polarization. As reported,
the complex dielectric constant was well fitted by the simple form

Xr

x - G5 (T <7) (582a)

in the (w) - 107 Hz range. The fluctuation-dissipation theorem for polariza-

tion fluctuations
kBT Imx(Q,w)

2
<lapy,|? - 2 B 58b)
may therefore be rewritten as a Lorentzian central component,
1m <[ap_ 1% o Tx M/ + @D, (T < T) (59)
Quw' — BT i e’

Q*o
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The light-scatterin rate in the low-frequency regime, w & (kB'l‘/ﬁ), is well

known to obey 2 m3w
dh@+£), _ £ 1 fi,2
(dﬂfdmf ) = e+ <|AXQ(,,| > (60)
where wi =c Iki I, w = c|kf| » and €4 € represent the frequencies and polari-
zations, respectively, of the initial (i) and final (f) states.
=k ke 0 Ty e (61)
the polarization matrix elements of the fluctuating polarisability are
& *
Ame =€ X AXQ» X £y 62)

and ¢ is the speed of light in the feorrocelectric medium. Since we wish to
establish the extent to which the experimental result in equation (@) will be
observed by measuring the effect given by equation(60), we need to consider the

total light scattering into a given solid angle

w, 4 .
dh(i > ) . (c_l) (f21 2> ] 63)

- <‘AX
d f -~
With F as the free energy per unit volume we have

dF = -SdT + E + dP + ijdx (64)

j ’

J
where Xj and xj are the stress and strain components. A complete assess-
ment of the conributions to light scattering arising from thermal fluctuations

will require the fecllowing thermal response functions to be cecnsidered:

Cp.x = r(as/ar)z’x , (6 52)

Xp = (QE/BE)T’X, (65b)

9 = (aP/axJ.),r,,r:’x = (axj/BE)T’E,x. (65¢)
and

Ajk = (3xj’a’ﬁc)'r,£,x = (axk/axj)T,E,X' (65d)

The following are valid as Q » O:
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2 2 ¥
<|ATgl > = GgT /Gy ) (66a) !
. ‘
<AT3AP8> =0, (66b)
AT ax,> = 0 (66¢) 3
M ¢ |
<AP” 66 ;
Aﬂg ~g> kBT.X_T ’ ( d) (
* :
P k 66 !
<Angxjg Taj (66e) ‘
<ax KT 66
xjgéxkg> B xjk . (66f)

Equations (66) represent a complete list of thermal £luctuations which can con-
tribute to light scatteriag.
Expanding xfi in the local ttermal parameters T,E and strains {xj},
we get
fi fi fi

fi
= + . + 67
dx Iy dT EE dp JZrJ, dxj (67)

which defines the I coefficients. The full static form factor from equations L

(66) and (é7) is therefore
2

‘ ' 2 £i 2 fi % £i
{ lim fi - |IT (k. T"/C YH(rL) o (k. Tx.) (r.m)
S”°<MX9,| > = | T ' B" ""B,x ,i_g kpTxy ~P
§ + I ah agngoafh + Z[(rfl B,
B sk 3
+ atrih™) kg Ta, (68)

which may be substituted in equation (63) tn zive the total light-scattering
cross-section. To generalize the result to frequency power spectrz via the !
transformation
£1,2 £i,2
4xgl>-+<hgj >, | (69)
one must replace the fluctuaticn matrix (equations 66)

T
lim <AY AY k TR, ,
PR e jk

|
|
.




by dynamic fluctuations

Y'oa e il *
4 3Qu Ykgm e (R (Q0) - Ry (Quu)) (71)

leaving the T coefficients in equation (68) unchanged. The dynamical equiva-~

lent of equations (g5) must then be obtained:

C(gow) = T(GS/GT)Q‘“) + iO+ ’ (723)
x(Q,0) = (églag)Q o+ fot (72b)
gj(g,m) = (ij/GE)Q,w + 1% (72¢)
Q) = 18000 g s (720)

Since th: derivation of the ten linearised equations required to evaluate
equations (72) is not necessary here, we will limit our evaluation of the con-
tributions to equation (68) to an estimation employing only thermodynamic
considerations.
. . _(53) .

Mermelstein and Cummins attribute the central component observed
in their measurements to a thermal diffusiuz mode. If one takes only the
first term in cur equation (68), their equation (11) is the result. Hence

they effectively write

2 2

) .'.
(ded f) (central component) (w w, /c ){r

el
© (kgT™/mw) IM{1/CQ,w) ],  (73)
with a dynamic heat capacity of the thermal difiusive form
[c,./c(Q,w)] = [iD,2%/(w + 1D.Q%)] (T4)
Px’ L T ! T

Here, DT = K/CPx is the thermal diffusivity, and K is the heat conductivity.

This yields a Lorenztian central component of width

2
l/rQ = D.Q" . (75)
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I1f the central component stems from the second term of equation (68)

we may write

3
2 wew, k. T
- £ 4, B fi,* fi
dgfdmf(central component) = (= )(““’)ImKEE ) “1(33“) . €:~ ], (76)
3

wow 2
~ vQuw
c ~

From equations (9) and (/7) one would then expect a Lorentzian central component
with a Q independent width of 1/t. This would allow the observatioqs of both
experiments tc be described by the same microscopic physical process which,
however, cannot be unambiguously identified at this time.

First let us consider the width of the central .ouponent. The light-
scattering width agrees with both DTQ2 and the dielectrically-measured width
(which is obviously a Q = 0 homogeneous mode). One has two possibilities:
(i) The light-scattering central component arises from a thermal diffusion
mode with a width given by equation (75), while the polarisation central
component arises from some other mechanisw. The similarity of the two line-
widths would then be pur.:ly coincidental. (ii) Both central components have
the same phvsical source. Ther the agreement with equation (75) is purely
coincidental. This dichotomy could be resolved experimentally, of course, by
changing ¢ in the light-scattering work and observing whether or not the
width appreciably changes.

Secondly, let us consider the relative intensities of the scattered

light given by the first and second terms in equations (77), The-e arc

3 2
*
h{(thermal diffusion) = (;I—)Isf . —%% . Ea} . (78)

“Px
h(pol - YO 2t ). (79)
polarisation) aP(Sf XT " &4 33 ¢ XT * E4)-

An analysis of equation (78) has been carried out by Mermelstein and

ks .




Cummins(53). An equivalent analysis of equation (79) is much more diffi-

cult in that (3/9P)x. is a third-order temsor which has not (to our knowledge)
been directly measured. The depolarization effects will be substantial and
not qualitatively different from equation (77). For an estimate of absolute

size we take the Land=u approach and expand the free energy in powers of P,

F(P,T) = ) a (T)p?® (80)
: n=1 n

stopping at n = 2 for second-order and.n = 3 for {irst-ourder phase trans-

tions., The an(T) which change sign at T = Tc are well known(SA). The co-

efficients are fit to E = 0 and (BxTISP) is estimated via equations (64) and
(80 Although this procedure is only a2 vough cpproximation, it ailows an
order~of-magnitude comparison between the light-scattering intensities

given by terms 1 and 2 of equation (68)

h(thermal diffusion) _ X -2

-1
H(polarization) to 10 © . (81)

T 10

=
r!uJH N

This suggests that the homogeneous polarization cffects would dominate those
of a thermal diffusion mode if it were precent, and “ience supports our view
that the central components observed by the two techniques have the same

origin.
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Fig. 1.

The high~pressure far infrared cell for transmission spectroscopy
in the frequency range 3-400 cm=! and with hydrostatic pressures
up to S kbar. ‘A, retaining cleosure; B, window mount; C, window;
D, packing; E, window retraining ring; F, gas input line.
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. Fig. 2. The experimental layout for high-pressure far infrared spectroscopy.
A, Michelson interferometric module; B, high-pressure cell module;
C, detector module; D, source; F, beam splitter; G, moving mirror;
H, high-pressure cell; I, module vacuum window; J, detector;
A 0, mirrors.
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Experimental layout of the dispersive Fourier transform
spectrometer,

Schematic view of the sample and screens used with the dispersive
Fourier transform spectrometer.
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The experimental (+ ¢« <) and calculated ( ) frequency
dependence of A (0,t,Q) for RbCL at 300 K. Also shown are
values of AA(0,t,N) determined at Q = 0 (0) from low-
frequency dielectric constant measurements, and at

Q= (A) from far infrared transmission measurements.
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frequency dielectric constant measurements, and at

Q= w, (A) from far infrared transmission measurements.
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The experimental (¢ ¢ +) and calculated ( ) frequency
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values of I'(0,t,}) determined at 0 = uy (A) from far
infrared transmission experiments.
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Fig. 24. The radiofrequency dependence of (a) ¢! and (b) ¢’

for KDP at different temperatures in the ferroelectric
| phase. The full curves vepreseui fits of the experi-
i mental data to the Debye form of relaxation given in ‘
{ equation (43). A, 91.12 K; @, 95.47 K; o, 103.36 K;
x, 110.46 K; A, 122,25 K.
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Fig. 25. The radiofrequency dependence of (a) ¢’ and (b) ¢
for CsDA at different temperatures in the ferroelectric
phase. The full curves represent fits of the experi-
mental data to the Debye form of relaxation given in
equation (43). A, 123.85 K; e, 128.76 K; 0, 133.78 K;
x, 138,75 K; A, 144.42 K,
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Table 9. Experimental values, in cm™t, of A%(0,1) and 880,,9), determined at 3 =0 . ;
and O = w,, for the cesium halides.

a¥o,1 3
. T Q=0 Q= afo,¢,0) A%0,t, w,) |
s 0 o -1.1 -0.7 .
100 -1.6 ~-2.0 1.2 -0.1 P
. CsCl 200 -2.9 -5.8 3.5 1.5
300 -3.810.4 ~9.841.0 5.1£2.4 2.322.0
5 0 0 0.4 ~1.2 :
100 -1.2 -1.6 0.8 -0.2 i
CsBr 200 -3.2 —4.2 1.7 0.6 by
300 ~5.220.6 -6.820.7 2.6%1.5 0.9%1.5 E
) b 5 0 0 0.2 0.5
! CsT 100 -1.0 -1.4 0.5 1.3
200 -2.3 -3.4 1.0 1.8

30 -3.7+0.4 -5.520.5 1413 2.2+1.1




Table 1J. Experimenta] values, ia cm™!, of A5(0, " and A0.¢,3), determived at 8=0
and Q@ =g, for the silver and thallium halides.
. a£0,0) .
T (X) 2=0 Oy, a#0,¢,0) aX0,t, w,)
5 0 0 3.5 - 4.5
100 - 08 -1.7 0.3 - 5.3
AgQ 200 - 3.7 -5.2 -21 -2
300 ~ 8.820.8 -9.541.0 -3.0£2.0 -10.5%5.0
5 ) 0 3.0 - 14
100 - 0.6 -13 -0.3 - 2.0
: AgBr 200 -~ 52 -4.6 -0.7 - 32
300 ~11,240.8 ~8.6%0.8 -1.2£2.0 - 48223
: 5 0 0 1.0 3.0
100 ~ 0.6 -0.9 3.9 4.5
na 200 ~ 34 —4.4 7.1 8.4
) 300 - 4.6%0.7 -8.3%1.1 10.8£2.0 12.622.1
3 5 0 0 1.0 3.0
: 100 - 0.5 -0.6 a1 4.4
, TiEr 200 - 2.0 -3.5 6.0 8.6
300 -~ 4.3£3.6 -7.620.9 8.842.0 12.81.8
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Table 11. Measured values of the temperature and pressure
dependence of 2I'(0,t,ux) for the alkali and heavy
metal halides.,

d2ro,t w) , - -
- e LA LS4 14 1 1
2T (0,¢,w,) cm™ ap (e Khar )
T & 2 80 200 290 290
LF 7.343.2 104229 13923 17.:19
. Lic1 144214 174214 231214 34514
LiBr 15.3+3.8 20.544.7 26.844.6 34.6:£5.4
Lil 25.044.7 27.9+4.7 350%7.5 39.748.8
FaF 6.5£1.3 10.4421 127221 16.8%2.0 0.10£0.07
NaCl 2.5+0.7 3..:0.7 53205  7.0:0.5 -0.50£0.13
NaBr 34209 43207  7.020.7  8.420.7 -0.5240.14
Nal 43213  6.2+#19  9523.0 13729
RF 11,9221  14.022.1  16.622.1 19.022.4
KCl 14206  1.9:04  3.420.5  4.520.4 —0.08£0.07
KBr 0.9:0.5 1.640.4  2.840.2  4.720.2 —0.03 0.03
X 2.0£0.6 2.7#0.5 5.020.5  6.2x0.5 0.03 £ 0.02
RbF 6.420.9  7.421.2  9.6:1.3 109213
RbC1 2.520.4 31204 40204  4.8:0.4 -0.0420.03
RbBr 1.320.3 17203  2.420.3  3.020.3 0.14£0.11
Rbi 1.3£0.2  1.420.2  2.140.2  2.8402 0.12£0.04
CsF 9.2:1.4  9.9:20 16.2£2,0 19.7£2.0
csCl 3.420.5 37405 51205  6.1:0.5 —-0.02+0.02
CsBr 1.5:0.2 23202 31202  4.0:0.2 -0.0420.02
Csl 1.0=0.2 14203 21203  2.6%0.3 -0.040.02
AgCl 3.5=0.5 6.0:05 95205 13.2:1.0 0.024 9,01
AzBr 2.5=0.3  4.520.5  8.520.5 13.2:1.0 0.04£0.02
TIC 40205 5.0¢0.5 6.320.5 7.7£0.5 -0.05+0.04
TIBr 27503  3.0:0.3 3.5:04  4.0:£04 -0.0340.02




‘AD=A095 151  NORTHEASTERN UNIV BOSTON MASS F/6 20/12
PHONON SELF=ENERGIES IN WEAKLY AND STRONGLY ANHARMONIC SYSTEMS. (U)

DEC 80 R P LOWNDES DA=ARO-D=31~124=72-6125
UNCLASSIFIED AR0=10392.14=P NL

222

e




Table 12.

the text,

The different values of o determined as defined in
Note that the errors quoted for ¢g and

o, reflect only the inaccuracies involved in the
linear extrapolation of the ferroelectric mode
spectral characteristics and do not contain any
estimate cf the inaccuracy of the fitting procedure.

72y x 100 (x), x 10°

a, x 10 a, » i0? o x 10* o a 107
KDP 67 &7 0204£C02 0251003 051 206
KDA 54 204 306 1 31 010 + 002 010 £ 002 *30 061
RbDA 36 102 111 £ 09 025 + 005 026 + 005 084 1-88
CsDA 024 £ 001 111 £ 01 047 1 003 052 £ 003 1t 251
KD*A ~-56 £ 04 -68+03° 039+£003 043+003 070 195
RbD*A -7¢ 102 -~50 £ 02 0431002 0754003 1-50 418
CsD*A -73 201 -5¢ £ 01 065+002 0731003 075 3ol

I
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Table 13. Values of the parameters characterizing
the Debye relaxation process in the ferro=-
electric phase of KDP and CsDA determined
from fits of the experimental data to the
form of equation (43). The transition
occurs at 122.4 K and 149.5 K in KDP and

i CsDA, respectively

T € () €' (x) A 1/t
{K) (MHz)
12235 4463 386 9146 3078
12053 3399 5190 5174 2789
118:89 2839 596 §9¢3 261
11713 2556 601 8924 2323
11555 2791 101-5 7567 21-31

KDP 11406 2512 927 8081 2073
11046 2308 1012 7631 1807
106:93 1972 882 7517 1563
10336 1728 952 6178 13-39
9847 1ur 452 3400 1913
9112 461 165 489 1884
14947 898 »7 910 7539
14673 397 29 1120 5260
14442 313 12 1227 4504
14174 257 17 1211 4152

CsDA 13875 233 43 115 3804
$33-78 219 71 985 3192
128-76 262 109 5¢0 2621
12641 243 9.7 378 2478
12385 219 2 166 2593
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